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PHYSICS & ML

e ML is largely engineering success. But it remains a black box -
not clear when one can make it work, what is the reliability/
uncertainty, how much data is required, etc.

e To fully develop scientific machine learning we may need
better understanding and control of ML methods.

e Number of early concepts in machine learning come from
physics (Boltzmann machine, Gibbs sampling, etc.)

e Physics is the main tool we have so far to study such complex
systems.
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Understanding deep learning is also a job for
physicists

Automated learning from data by means of deep neural networks is finding use in an ever-increasing number of
applications, yet key theoretical questions about how it works remain unanswered. A physics-based approach may

help to bridge this gap.

Lenka Zdeborova

magine an event for which thousands of physicists it is a matter of sitting tight
tickets get sold out in under 12 minutes. waiting for tools and answers that we can
We are not speaking of a leading show subsequently put to use. In this Comment, I
on Broadway or a concert of a rockstar, but argue that, instead, we need to join the race
about the Conference on Neural Information  of searching for these answers, because it
Processing Systems (NeurIPS) — the is precisely the physicists’ perspective and
principal gathering for research in machine  approach that is needed to enable progress
learning and artificial intelligence. The in this endeavour.
fields related to automated learning from
data are experiencing a surge in research Three ingredients to decipher deep
activity, as well as in investment. This is learning
largely thanks to developments in a subfield =~ The engineering details of current
called deep learning, which has led to a deep-learning systems, such as the ones

Algorithm




Physics Nobel Prize 2021 to Giorgio Parisi

“Parisi's discoveries make it possible to
understand and describe many different
and apparently entirely random complex
materials and phenomena, not only in
physics but also in other, very different
areas, such as mathematics, biology,
neuroscience and machine learning.”
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LET'S PLAY A GAME

e Generate a random Gaussian variable W
(zero mean and variance A¥*)

e Report:
» Y=W+1/VN if the cards were the same.
» Y=W-1/VN if the cards were different.




LET'S PLAY A GAME

e Each pair reports:
» Yii=Wi;j+1/vN if cards the same.

Collect Yj; for every pair (ij).

Goal: Recover cards purely from
the knowledge of Y = {Yl.].}

1<J




HOW TO SOLVE THIS?

= L

Y. — x¥x* + W.. true values of cards:
: / x¥e{-1,+1}

ij .
VN Wi ~ N0, A%)

Principal component analysis

xpca = leading eigenvector of Y estimates x* (up to a sign).

BBP phase transition: A > 1 Xpcp c X* ~ 0

Watkin, Nadal’'g4 .
Baik, BenArous, Pechet’o4 A = ‘XPCA A ‘ =0




What is the minimal achievable estimation error on x*?

(Is it possible to do better than PCA?)

What is the minimal efficiently achievable estimation error on x*?




BAYESIAN INFERENCEL

iy =
(:1:) ( |x) Values of cards: = }

Posterior distribution:

P(z]Y) =

N wazj/\/_—)2

Bley - (YlA) TG + 1) + 6z — 1] [J e~

=1 1<

Bayes-optimal inference = computation of marginals:

sy= ) PGl

{xj}j;éi

. Computationally expensive in general (#P-hard) ;




How do we compute the
Bayes-optimal performance?

Map to a spin glass?

Y —J




BACK TO THE CARD GAME

- (J,—S:S:\/N)? S; € {—1,+1}

e 24

Hamiltonian
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Partition function

Mean-field Ising spin glass
(Sherrington-Kirkpatrick’75 model)

Jijconditioned on Si*: planted disorder




HOW TO SOLVE THIS?

o Mean-field spin glass models are exactly solvable using replica

method / cavity method. (Mezard, Parisi, Nishimori, Watkin, Nadal,
Sompolinsky, many many others 70s-80s.)

“Parisi's discoveries make it possible to
understand and describe many different
and apparently entirely random complex
materials and phenomena, not only in
physics but also in other, very different
areas, such as mathematics, biology,
neuroscience and machine learning.”




MEAN-FIELD SPIN GLASS

» For Ising spins, planting is equivalent to ferromagnetic bias

J():l/\/E T:\/Z

De Almeida;
Thouless’78:

Ill: N. Elimehed. © Nobel
Media 2016

David ). Thouless




MEAN-FIELD SPIN GLASS

» For Ising spins, planting is equivalent to ferromagnetic bias

J():l/\/E T:\/Z




What can such an analogy be good for?

Designing new algorithms.

(Krzakala, Moore, Mossel, Neeman, Sly, LZ, Zhang, PNAS‘2013)




BACK TO THE GAME

Collect Jij = Wi5+Si*Si*/vN, for all (33).

Goal: Recover cards purely from
the knowledge of J — {ng }i<j

Simple spectral algorithm:

Leading eigenvector of J
correlated to S*. Phase
transition matches (overlap
smaller).




BACK TO THE GAME

Collect J;; = Si*S;*, for cN/2 of (33).
Flip with probability p

Goal: Recover cards purely from __J+1
the knowledge of J = {J;;};, 7 =

Simple spectral algorithm:

Leading eigenvector of J
correlated to S*. Phase
transition does not match.

+1

Caveat: Spectral algorithms for sparse data fail
(do not work down to the easy/hard phase transition).




SPARSE DATA: EXAMPLES

o Clustering sparse networks: Number of friends does not
grow with the size of the world.

e Similarity based clustering: Obtaining similarities is costly.
(Iengthy experiment, or cost of information).

e Recommendation systems: Only some users ranked some
movies. Goal: reconstruct the rest of ratings.

e Big data: the full matrix can not be stored nor analyzed.

Sparse matrices:

Leading eigenvalues arise from local heterogeneity/impurity
not from global structure (Listhitz tails).




e Analyze the phase transition

lll: N. Elimehed. © Nobel
Media 2016

David ). Thouless

VOLUME 56, NUMBER 10 PHYSICAL REVIEW LETTERS GO MARCH]986)

Spin-Glass on a Bethe Lattice

D. J. Thouless

Department of Physics, University of Washingron, Seartle, Washingion 98195
(Received 27 November 1985)

The Ising spin-glass in a magnetic field is studied for the Bethe lattice. There is an instability that
agrees with the replica-symmeltry-breaking transition found for the infinite-range model. Correla-
tion lengths are finite on both sides of the transition, but there is a correlation length that diverges
at the transition. Some features are different from those of the infinite-range model, and in partic-
ular the magnetic susceptibility and internal energy vary smoothly through the transition. An anal-
ogy with the localization transition on the Bethe lattice is pointed out.




THOULESS CALCULATION

Bethe recursion: E

1
ui ™l = Eatamh tanh(BJ;;) tanh [ B8 ) w7}’
keoi\j

paramagnetic fixed point ¢ 77 =0 V(ij) € G

small-u expansion "‘_U — tanh(8J;;) } : uk—+z
keoi\j

square and average over disorder
(uf) = c(tanh®(8.Ji5)) s (ui_q)

critical value: b — ctanhZ(ﬁc) for. /= |

(c is average degree, c=2M/N)




So where 1s the spectral method?




ANOTHER VIEW

(Krzakala, Moore, Mossel, Neeman, Sly, LZ, Zhang, PNAS‘2013)

1
ui ™l = Eatamh tanh(BJ;;) tanh [ B8 ) w7}’
keoi\j

paramagnetic fixed point ¢ 77 =0 V(ij) € G

small-u expansion ’_U = tanh(83.J;,) Z T

~sgglare and average over disorder

critical al 10500
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ANOTHER VIEW

(Krzakala, Moore, Mossel, Neeman, Sly, LZ, Zhang, PNAS‘2013)

1
ui ™l = Eatamh tanh(3.J;;) tanh | 8 Z T

paramagnetic fixed point

small-u expansion

U — b tr | non-backtracking operator

Bi—)j,k—ﬂ = j,k(l en 57;7[)&7;]' if (Z]), (k’l) c b
— (0 otherwise




NON-BACKTRACKING
SPECTRAL ALGORITHM

all eigenvalues inside a circle of radius +/c

additional real eigenvalue at A = ¢(2p — 1) > +/c
eigenvector correlated to the ground truth.

41 (cis average degree, c=2M/N)




NON-BACKTRACKING SPECTRAL ALGORITHM
FOR CLUSTERING OF NETWORKS

- O B
~ Modularity
* Random Walk

Non-backtracking spectral method improves over traditional ones.

- —



Spectrum of a graph with 5 communities
as edges are added between groups.




1ST ORDER PHASE

TRANSITIONS




PHASE TRANSITIONS

Phase diagram of water
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15T ORDER PHASE TRANSITIONS

Slight change of the rules of the game:
P(S")=pl6(S*—1)+6(S"+1)]/24+ (1 —p)d(S™)

(sparse PCA - relevant in data-science applications to learn relevant dimensions)
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1ST ORDER PHASE TRANSITION

Slight change of the rules of the game:
P(S*)=plo(S*—1)4+6(5"+1)|/2+ (1 — p)d(S™)

(sparse PCA - relevant in data-science applications to learn relevant dimensions)
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ALGORITHMIC INTERPRETATION

e Easy by approximate message passing algorithms.
e Impossible information theoretically.

e Hard phase conjecture: No polynomial algorithm works.
Mathematically wide open.
Physically sensible.
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PHYSICS VS LEARNING

liquid supercooled liquid

impossible computationally hard l possible
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HARD REGIME

Hard phase: Algorithms “stuck” at low accuracy for exponential time.

Diamond

Metastable diamond
= low accuracy.

Equilibrium graphite
= high accuracy.
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Understanding deep learning is also a job for
physicists

Automated learning from data by means of deep neural networks is finding use in an ever-increasing number of
applications, yet key theoretical questions about how it works remain unanswered. A physics-based approach may

help to bridge this gap.

Lenka Zdeborova

magine an event for which thousands of physicists it is a matter of sitting tight
tickets get sold out in under 12 minutes. waiting for tools and answers that we can
We are not speaking of a leading show subsequently put to use. In this Comment, I
on Broadway or a concert of a rockstar, but argue that, instead, we need to join the race
about the Conference on Neural Information  of searching for these answers, because it
Processing Systems (NeurIPS) — the is precisely the physicists’ perspective and
principal gathering for research in machine  approach that is needed to enable progress
learning and artificial intelligence. The in this endeavour.
fields related to automated learning from
data are experiencing a surge in research Three ingredients to decipher deep
activity, as well as in investment. This is learning
largely thanks to developments in a subfield =~ The engineering details of current
called deep learning, which has led to a deep-learning systems, such as the ones

Algorithm




SUPERVISED LEARNING




LEARNING A RULE

[%‘ = Xy = (01001010 01110011 10001100 01001011

01110000 10001100 ..... all the pixels ....)

Goal: Find a function f so that

f(Xﬂ) — for a new picture of a cat.

JX)=-1 for a new picture of a dog.

// -
!

dk




HOW DOES IT WORK?

e Linear regression: f,(X)=w-X,

* Generalized linear regression: f,(X,) = g(w-X) O/

o Neural networks: f,(X,) = g (W@pOWOp@WDpOWDX ))))

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

Ve

— = y
= Iz
> activation function,
e.g. sign, or relu.




Hierarchy of features
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HOW DOES IT WORK?

» Neural networks: £,(X,) = p@W@pOWDpOWDp WX ))))

—

— N\ 4)
WO e wo lwa o W

o Core of ML today: many labeled examples + GPUs +
stochastic gradient descent minimisation of

n
min 2 g (y U f W(X,u)) Loss function, e.g. least
w ,Lt=1 T

_—7 squares, Or Cross-entropy

Keep in mind: The goal is low test error, not low loss.




PHASE TRANSITIONS IN

LEARNING WITH
NEURAL NETWORKS




Published in Transactions on Machine Learning Research (08/2022)

Emergent Abilities of Large Language Models
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RAPID COMMUNICATIONS

PHYSICAL REVIEW A VOLUME 41, NUMBER 12 15 JUNE 1990

First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The ex-
amples are given by a reference (teacher) perceptron. It is shown that as the number of examples
increases, the network undergoes a first-order transition, where it freezes into the state of the
reference perceptron. When the transition point is approached from below, the generalization er-
ror reaches a minimal positive value, while above that point the error is constantly zero. The
transition is found to occur at agp =1.245 examples per coupling.

VOLUME 65, NUMBER 13 PHYSICAL REVIEW LETTERS 24 SEPTEMBER 1990

Learning from Examples in Large Neural Networks

H. Sompolinsky“” and N. Tishby
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

H. S. Seung

Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 29 May 1990)

A statistical mechanical theory of learning from examples in layered networks at finite temperature is
studied. When the training error is a smooth function of continuously varying weights the generalization
error falls off asymptotically as the inverse number of examples. By analytical and numerical studies of
single-layer perceptrons we show that when the weights are discrete the generalization error can exhibit
a discontinuous transition to perfect generalization. For intermediate sizes of the example set, the state
of perfect generalization coexists with a metastable spin-glass state.

PACS numbers: 87.10.+¢, 02.50.+s, 05.20.—y

Generalisation error




TEACHER-STUDENT SETTING

Teacher-network Student-network

: G.enera’Fe data X, nﬂsamples ,Of d o Observes X, y, the architecture of the
dimensional data, iid Gaussian. ik

1 *
® el rancom Welsiia e Goal: Learn the same function as used
o Generate labels y using: by the teacher (have a good test error).

student-weights

teacher-weights data
data / X / l
X o l \ 22 label
g w> labels Y¥o =
2

W:jfy Wa Y




GARDNER PROGRAM

J. Phys. A: Math. Gen. 22 (1989) 1983-1994. Printed in the UK

1989

Three unfinished works on the optimal storage capacity

of networks data

X weights
E Gardner and B Derrida W

The Institute for Advanced Studies, The Hebrew University of Jerusalem, Jerusalem, Israel 1 b 1
and Service de Physique Théorique de Saclayt, F-91191 Gif-sur-Yvette Cedex, France apels

Received 13 December 1988

Abstract. The optimal storage properties of three different neural network models are
studied. For two of these models the architecture of the network is a perceptron with =J
interactions, whereas for the third model the output can be an arbitrary function of the
inputs. Analytic bounds and numerical estimates of the optimal capacities and of the
minimal fraction of errors are obtained for the first two models. The third model can be
soived exactly and the exact solution is compared to the bounds and to the results of
numerical simulations used for the two other models,

° Take random iid Gaussian X ;, and random iid w’* from P,

d
o — K
Createy, = o Z X,W:
il

n— o0 d— o p dimensions

e High-dimensional regime: ol n samples
a=nld=




QUESTIONS OF INTEREST:

For a given task and a number of data samples:
e What is the best information-theoretically achievable test error?

e What is the best efficiently achievable test error?

\\& -

training algithm




BAYES-OPTIMAL GENERALIZATION
IN THE TEACHER-STUDENT SETTING

Posterior probability distribution:

1 n
PR 2= = PyW) [ | P, 1 X, W)
5 ,u=1

where P, (y,1X,, W) =60y, — f(X))

d
WZ{WI,Wz,...,WL} X’uER

> A new sample Xnew 1S given. Bayes-optimal prediction of |

a new label: }A’new =

~P(W]y,X) [fW(XneW ]




RESULT FOR THE OPTIMAL ERROR

Barbier, Krzakala, Macris, Miolane, LZ; arXiv:1708.03395, COLT 18, PNAS’19

® Assumptions: X, A0 W B(Weyy =0 szWz*
=]
® Main theorem in the limitd — oco,n — 00, a = n/d = O(1):

A formula for so-called free entropy @r(72) that implies both the
test MMSE & test MSEamp as:

me R

A

MMSE = p — argmax®y(m)

S
:
S

MSE \ypp = p — mayvp

argmax ®pq(m) mapp = local max of @pg(m) with lowest m

p=E PW(Wz)




RESULTS FOR THE OPTIMAL ERROR

Barbier, Krzakala, Macris, Miolane, LZ; arXiv:1708.03395, COLT’ 18, PNAS’19

-
Def. free entropy: O = c}_l_)Iilo E[Ey,x log Z(y, X)

Theorem:

® = sup inf Dyg(m, 1) Dpg(m) = int Dpg(m, m)

mm

. . mm
Dps(m, m) = (Dpw(m) 25 aq)Pout(m; p) )

where
(I)Pw(rh) = _Z,WO
®p (m;p)=E,, depout(y [Vmy + /p = m)InEdPy (v [\/my + \/p — m&)]]

w,wy~ P, zv, &~ N(0,1) p=Ep W

= Bwwa+\/ mwz—mw2/2\
[In E, (e™mrtVi )




RESULTS FOR THE OPTIMAL ERROR

Barbier, Krzakala, Macris, Miolane, LZ; arXiv:1708.03395, COLT’ 18, PNAS’19

-
Def. free entropy: O = c}_l_)Iilo E[Ey,x log Z(y, X)

Theorem:
® = sup inf Dyg(m, 1) Dpg(m) = int Dpg(m, m)

m
m m

. . mm
Dps(m, m) = (Dpw(m) 25 aq)Pout(m; p) )

Corollary: Optimal test error

gtest — Ly r [(p(\/;v)z] 2 [(,0< V m*v + \/p = m*z)]z
P = [EPW(WZ)
v,z ~ N(0,1)
L~ by

where m* is the extremizer of ®rs(m).




Algorithm 2 Generalized Approximate Message Passing (G-AMP)

Input: y
Initialize: a° v9, t = 1 qut.,u
repeat

AMP Update of wy, V),

AMP Update of Y;, R; and gout

E,f Z i wgout ;u Yus Vt)

1 1\—1
Rf — aﬁ + (Zf+ Z Xp,z'gout (wfp Yus V;f)
I

AMP Update of the ethIIldted IIldI‘glIldlb a,z, v;

t—t+1
until Convergence on a,v
output: a,v.

Variances and means
of the pre-activations

Variances and means
of the weights.

fo(S,R) = X0pfa(S, R).

f dzPout(y|2) (z —w) e 2v

Jout (w, Y, V)
V [dzPou(y|z)e™ "2




STATE EVOLUTION

Bolthausen’09; Bayati, Montanari’i1; Javanmard, Montanari’'i3.

d
Define: m! = %Z w¥af then MSE({)=—p-— m
i=1

mt in the AMP algorithm evolves as:
1 — 29.D (’\t) At i,
m m P m m = Qaﬁm@pout (m ,,0)

Recall the RS free entropy

Dpg(m, m) = (I)Pw(m) + a®p (m;p)

out




LEARNING CURVES

@(z) = sign(z) 2 —
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BINARY PERCEPTRON

Barbier, Krzakala, Macris, Miolane, LZ; arXiv:1708.03395, COLT 18, PNAS’19

d
. X.~ 4001 n - o
y, = sign Z,Xiwi* i n/d = (1

1
0.8

0.6

optimal, achievable

test error

optimal

AMP algorithm @ hard
=

| o0 o o o o
0.5 1 1.5 2

logistic regression

# of samples per dimension n/d




SUDDEN EMERGENCE OF PERFECT LEARNING
(= A PHASE TRANSITION)

liquid supercooled liquid

impossible computationally hard possible

1

0.8 -

0.6 -

0.4

Test error

impossible




PHASE RETRIEVAL

e Broad range of applications in signal processing and imaging.

sample source
mask

%ﬁ'

e Teacher-student setting with teacher having no hidden units,
teacher’s activation function is the absolute value.

X~ NO1/d)  wk~HO,]) g=1...n
=

d

14y
Z S
—1

Phase retrieval: Regression from training data {X ,y,}

; —



PHASE (SIGN) RETRIEVAL

Maillard, Loureiro, Krzakala, LZ, arXiv:2006.05288, NeurIPS’20.

d
S ox
yﬂ_ Zmel.
i=1

wl.* ~ N(0,1)

o
(0 0]
1

o
(@)]
]

X, ~ N (0,1/d)

O
s
1

—
o
—
—
w
ke
O
—
©
3
o
n
c
©
U
=

I
| === Dbest achievable error
= hest known efficient algorithm

& G-VAMP

o
N}

0.0 -
0.3 0.4 0.5 0.6

weak-recovery, # of samples for generalisation better than random

i =1 # of samples for perfect generalisation for any algorithm.
# of samples needed for perfect generalisation for AMP algorithms.

* LLL lattice-based reduction algorithm work in poly time for @ > 1 (Song, Zadik, Bruna’21)







DEEP LEARNING USES
GRADIENT DESCENT

(NOT MESSAGE PASSING)
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GRADIENT DESCENT FOR PHASE RETRIEVAL

n

LLoss function:

X, ~ N(0,1/d) wl.* ~ N (0,1)

Gradient flow: Ww() =—-9,Z ( {wi(?) }]‘.Zzl)

Initialisation:  w.(0) ~ #(0,1)




GD IN PHASE RETRIEVAL

Sarao Mannelli, Biroli, Cammarota, Krzakala, Urbani, LZ; 2006.06997, NeurIPS’20.

N=d

N =4096
N =2048
N=1024
N =512
N =256
N=128
N =64
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GRADIENT DESCENT IN PHASE RETRIEVAL

Sarao Mannelli, Biroli, Cammarota, Krzakala, Urbani, LZ; arxiv: 2006.06997, NeurIPS’20.

Sample complexity needed for exact recovery

Closing the gap between GD and AMP?
I Chen, Chi, Fan, Ma’19

< > Cai, Huang, Li, Wang’21
{ 113 ~7 C poly(log d)

e s

IT AMP GD numerics

Note: Kernel methods need a = O(d) to solve phase retrieval.
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DEEP LEARNING IS
OVER-PARAMETRIZED

MSE: 35.8272 ¥\ MSE: 0.00558132

Training Samples
Target function Target function
w— Pradiction

Saxe, Advani’1y




DOUBLE-DESCENT

under-fitting over-fitting under-parameterized /\ over-parameterized

Test risk Test risk

“classical” . “modern”
regime : interpolating regime

~ Training risk ~ Training risk:
sweet spot__ . — __ T~ . _interpolation threshold
A == » = !l
Capacity of H Capacity of H

(a) (b)

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-off. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

-

Belkin et al. 2019




MORE ON DOUBLE DESCENT

e Generalisation error in learning with random features and

the hidden manifold model, Gerace, Loureiro, Krzakala,
Mézard, LZ, ICML’20.

Paper n. 1 for flipped class.




OVER-PARAMETRIZED PHASE RETRIEVAL

n

Loss function: 3({wm}la )= Z [

X, ~ N(0,1/d) w* ~ (0,1

Wide (m>d) over-parametrised
two-layer neural network

Gradient flow: W;,(t) = -0, Z <{ wip(?) }] . 1)
Initialisation:  w;,(0) ~ A (0,1)




OVER-PARAMETRISED LANDSPACE

Sarao Mannelli, Vanden-Eijnden, LZ, arxiv:2006.15459, NeurIPS’20.

Theorem 3.1 (Single unit teacher). Consider a teacher with m* =1 and a student with m > d hidden
units respectively, so that A* has rank 1 and A has full rank. Given a data set {xy}}_, with each x}, € R¢
drawn independently from a standard Gaussian, denote by M,, 4 the set of minimizer of the empirical loss
constructed with {xy}}_, over symmetric positive semidefinite matrices A, i.e.

Mpda= {A = AT positive semidefinite such that E,.(A) = 0} . (10)
Set n = |ad]| for « > 1 and let d - co. Then

lim P (Mjaqa # {4°}) =1 ifa€[0,2 (11)

whereas

lim P (Magpa={4"}) >0  ifac(20) (12)

d—oo

1 = *k 1 m* Xk *k
At) = - Zwi(t)wf(t), A" = - sz’ (w))",




OVER-PARAMETRIZED PHASE RETRIEVAL

Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459

Theorem 4.1. Let {w;(t)}*, be the solution to (3) for the initial data {w;(0)}*,. Assume that m > d
and each w;(0) is drawn independently from a distribution that is absolutely continuous with respect to the

Lebesque measure on R%. Then

1 m
~ ng"’('w;’o)T as t— oo (15)

1=1

R R SR _
A_mizzlwz(t)'wz- (t) = A =

and A s a global minimizer of the empirical loss, i.e.

Ep(Aw) = 2Ln(w, ...
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OVER-PARAMETRIZED PHASE RETRIEVAL

Sarao Mannelli, Vanden-Eijnden, LZ, arxiv:2006.15459, NeurIPS’20.

Over-parametrised neural network trained by gradient descent
needs fewer samples to solve phase retrieval

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

1 1.13 ~7 C poly(log d)

—_—

IT AMP GD in an over- GD numerics
parametrised network




e
e
o P
et
O
o0
—
qv]
o0
n
o P
2
o=
qv]
P
i




Teacher/target functions considered:

® So far: no hidden units, d — co,n — oo, = n/d = O(1).
Generalised linear model, single index model.

® (1) hidden units, d — oo,n —> o0, a = n/d = O(1).
Committee machine, multi-index model.

—————— e ——— e — E— e e e e e — E— e e e —————

| : : o)
| ® O(d) hidden units,d — oo, n — 00, = n/d” = O(1).
Extensive width.




EXTENSIVE WIDTH PHASE RETRIEVAL

Maillard, Troiani, Simon, Krzakala, LZ. arXiv:2408.03733

Teacher/target function with quadratic activation:

2
Xwt)  wE~SHOD X~ H(O1/d)

input data

X
w labels

y
Paper n. 2 for flipped class.

m n l
Solvable in the limit: EE = K’E —a,d > 0. x,a = 0(1)



AND WHAT ABOUT LEARNING

FROM SEQUENCES
(AS LLM/TRANSFORMERS DO)?
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PHYSICAL REVIEW RESEARCH 6, 023057 (2024)

Mapping of attention mechanisms to a generalized Potts model

Riccardo Rende @, Federica Gerace ©©, Alessandro Laio, and Sebastian Goldt ®"
Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy

Please read [masked| caption
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eVanilla Attention

eFactored Attention ™= ; As; (g B3)V (&5) ’-’ ng = ; J3;U (s;) Potts

Paper n. 3 for flipped class.




A Phase Transition between Positional and Semantic Learning
in a Solvable Model of Dot-Product Attention

Hugo Cui', Freya Behrens', Florent Krzakala?, and Lenka Zdeborova'

Lstatistical Physics Of Computation laboratory, EPFL, Switzerland

“Information Learning & Physics laboratory, EPFL, Switzerland arxiv:2402.03902

Example Sequence #1 Example Sequence #2 Example Sequence #3

Positional
°
L]

e
o

DWP®OOUONN®®
L?:przzzoz,-
mTO I - Arr=20

T T

=

attention value

Semantic
°
~

semantic

e e v 2 v~
. .~

o
ES

e
=)

WWwwOoOOo0OnNnNoww
@ II>»ZZZ20Z
mMOIT - Ar-r=220

Paper n. 4 for flipped class.




CONCLUSION

Physics has many useful tools applicable to understand
machine learning / deep learning / Al.

H
QUESTIONS




BONUS/OLD




CAN WE HELP WITH PHYSICS?

What is a good model to understand deep learning?

We aim to reproduce the salient behaviours of the real system.

Iterative process of improving the model.




SIMPLEST NEURAL NETWORK

Single layer neural network = perceptron = generalized
linear regression.

data Given (X,y) find w such that

X weights
A%

(S
%

(noisy) activation function

p dimensions.
n samples/ data points




TEACHER-STUDENT MODEL

Gardner, Derrida’89, Gyorgyi’9o

il J

N WS
=== =

» Goal: Compute the best possible generalisation error achievable
with n samples of dimension p.

data

: ‘ - . X weights
e High-dimensional regime: n — 0 W

labels
P O y

nlp = O(1)




LEARNING CURVES

@(z) = sign(z) 2 —

1 ==

0.8 ¢ .AIYIP algorithm
logistic regression

0.6 |

04 |

O _
—o— i " - !
2 25 3 35 4 45 5

# of samples per dimension n/p

—
o
P
—
D)
=
@)
o pi
)
qe!
0p)
i
qv!
P
D)
c
D)
o0




PHASE TRANSITIONS

I 00

(P(Z) = Sign(z) ;& {—1,—|—1} b o0 n/p = Q(l)
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PHASE TRANSITIONS

I 00
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COMPRESSED SENSING

P, (w) = (1 = p)o(wy) + p A (w;;0,1) 7o nip = Sl

Easy/hard threshold =
spinodal of a 1st order
phase transition.

Freedom in the design of X.

Spatial coupling.




TEACHER-STUDENT GLM

Paper n. 1 for flipped class.

Optimal errors and phase transitions in high-dimensional
generalized linear models,

Barbier, Krzakala, Macris, Miolane, LZ, arXiv:1708.03395, COLT 18, PNAS’19
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TOWARDS THEORY OF DEEP LEARNING?

o Gradient-based dynamics: Marvels and Pitfalls of the
Langevin Algorithm in Noisy High-dimensional Inference,
Mannelli, Biroli, Cammarota, Krzakala, Urbani, LZ, PRX’20.

Paper n. 2 for flipped class.

e Structured data & architectures with hidden layers:
Generalisation error in learning with random features and
the hidden manifold model, Gerace, Loureiro, Krzakala,
Mézard, LZ, ICML’20.

Paper n. 3 for flipped class.




How to make the hardness go away?




COMPRESSED SENSING

From 106 wavelet coefficients, keep only 25k.

Most signals of interest are sparse in an appropriate basis.
(Exploited everywhere for data compression. Jpeg2000.)

We record the full data and then compress to keep only few bits.

Idea: Can we record directly only the relevant bits. How?




MATHEMATICAL SETTING

Design the matrix F such that sparse signal x can be
reconstructed efficiently from measurementsy.

Vector x is sparse, 1.e. only pN elements are non-zero.
The linear problem has many solutions, only is one sparse.




PHASE DIAGRAM

Bayes-optimal compressed sensing, random 1id F:

1

Sparse prior:
Px(x;) = (1 = p)o(x;) + p A (x;;0,1)

Easy/hard threshold =
spinodal of a 1st order
phase transition.

Freedom in the design of F.




NUCLEATION IN PHYSICS

Infinitely (exp N) living metastable states
exist only in mean field systems (when L
surface as large as volume).

Nucleation in finite dimension

Cost to flip a metastable droplet: F, = [ Ld_ L A f Ld

- A
AF 4

L*

finite in N !!

L <« L* surface wins, droplet shrinks

L > L* volume wins, droplet grows




NUCLEATION FOR OPTIMALITY

Heating pad or hand warmer:

sodium acetate

melts at 58 C

Thanks to: UCGP 2008, Kyoto, Japan

- —






INDUCING NUCLEATION IN
COMPRESSED SENSING




METASTABILITY VANISHES!

Thanks to induced nucleation compressed sensing is

computationally tractable down the information theoretic limit!

Krzakala, Mezard, Sausset, Sun, Zdeborova, Phys. Rev. X 2012.
Proot: Donoho, Javanmard, Montanari, ISIT 2012.
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EXAMPLE FOR BENCHMARK DATA

Shepp-Logan phantom,
sparse in the Haar-wavelet representation



EXAMPLE FOR BENCHMARK DATA

Decoding with sparse superposition codes.

10 15 20 25 a0
block index

Fisher-KPP type of
wave-front propagation

e from: J. Barbier et al. Threshold Saturation of Spatially Coupled Sparse Superposition
Codes for All Memoryless Channels. IEEE Trans. Inf. Th.’16, ITW’16.




