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PHYSICS & ML

ML is largely engineering success. But it remains a black box - 
not clear when one can make it work, what is the reliability/
uncertainty, how much data is required, etc.


To fully develop scientific machine learning we may need 
better understanding and control of ML methods. 


Number of early concepts in machine learning come from 
physics (Boltzmann machine, Gibbs sampling, etc.)


Physics is the main tool we have so far to study such complex 
systems. 





“Parisi's discoveries make it possible to 
understand and describe many different 
and apparently entirely random complex 
materials and phenomena, not only in 
physics but also in other, very different 
areas, such as mathematics, biology, 
neuroscience and machine learning.”

Physics Nobel Prize 2021 to Giorgio Parisi 
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LET’S PLAY A GAME
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LET’S PLAY A GAME

• Generate a random Gaussian variable W 
(zero mean and variance Δ*)


• Report:   


‣ Y=W+1/⎷N if the cards were the same.                


‣ Y=W-1/⎷N if the cards were different. 
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LET’S PLAY A GAME

Collect Yij for every pair (ij). 

Goal: Recover cards purely from 
the knowledge of

• Each pair reports:   


‣ Yij=Wij+1/⎷N if cards the same.                


‣ Yij=Wij-1/⎷N if cards different. 

Wij ⇠ N (0,�⇤)

Y = {Yij}i<j



HOW TO SOLVE THIS?

true values of cards: Yij =
1

N
x*i x*j + Wij x*i ∈ {−1, + 1}

x* ∈ {−1, + 1}N

Wij ⇠ N (0,�⇤)

BBP phase transition: Δ > 1
Δ < 1

xPCA ⋅ x* ≈ 0
|xPCA ⋅ x* | > 0Watkin, Nadal’94


Baik, BenArous, Pechet’04 

xPCA = leading eigenvector of Y estimates x* (up to a sign). 

Principal component analysis



What is the minimal achievable estimation error on x*? 


(Is it possible to do better than PCA?)


What is the minimal efficiently achievable estimation error on x*? 



BAYESIAN INFERENCE

P (x|Y ) =
P (x)P (Y |x)

P (Y )

P (x|Y ) =
1

Z(Y,�)

NY

i=1

[�(xi + 1) + �(xi � 1)]
Y

i<j

e�
(Yij�xixj/

p
N)2

2�

Values of cards: 

Posterior distribution: 

Bayes-optimal inference = computation of marginals: 


xi ∈ {−1, + 1}
x ∈ {−1, + 1}N

Computationally expensive in general  (#P-hard)

μ(xi) = ∑
{xj}j≠i

P(x |Y )



How do we compute the                 
Bayes-optimal performance? 

Y ! J

xi ! Si

Map to a spin glass? 



BACK TO THE CARD GAME

Si 2 {�1,+1}

Mean-field Ising spin glass                  
(Sherrington-Kirkpatrick’75 model)

 Jij conditioned on Si*: planted disorder 

Hamiltonian

Partition function

Boltzmann 
distribution

P(S |J) =
1

Z(J, Δ*) ∏
i<j

e− 1
2Δ* (Jij−SiSj/ N)2

P(S |J) =
1

Z̃(J, Δ*)
e

− 1
Δ* N

∑i<j JijSiSj



Mean-field spin glass models are exactly solvable using replica 
method / cavity method. (Mezard, Parisi, Nishimori, Watkin, Nadal, 
Sompolinsky, many many others 70s-80s.) 

HOW TO SOLVE THIS? 

“Parisi's discoveries make it possible to 
understand and describe many different 
and apparently entirely random complex 
materials and phenomena, not only in 
physics but also in other, very different 
areas, such as mathematics, biology, 
neuroscience and machine learning.”



MEAN-FIELD SPIN GLASS

T =
p
�J0 = 1/

p
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De Almeida; 
Thouless’78:

p
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‣ For Ising spins, planting is equivalent to ferromagnetic bias                     
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What can such an analogy be good for? 


Designing new algorithms. 

(Krzakala, Moore, Mossel, Neeman, Sly, LZ, Zhang, PNAS‘2013)
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BACK TO THE GAME

Collect Jij = Wij+Si*Sj*/⎷N,  for all (ij). 

J = {Jij}i<j

Goal: Recover cards purely from 
the knowledge of

Simple spectral algorithm: 


Leading eigenvector of J 
correlated to S*. Phase 
transition matches (overlap 
smaller).  



BACK TO THE GAME

Collect Jij = Si*Sj*,  for cN/2 of (ij).

Flip with probability ρ

J = {Jij}i<j

Goal: Recover cards purely from 
the knowledge of

Simple spectral algorithm: 


Leading eigenvector of J 
correlated to S*. Phase 
transition does not match.  

Caveat: Spectral algorithms for sparse data fail 
(do not work down to the easy/hard phase transition).

-1

+1
-1

-1

-1

-1

-1

-1

+1

+1 +1

+1
+1

+1

+1

+1

-1

+1
+1

+1

+1
+1

-1

-1

-1

-1

-1
-1

-1-1

-1

+1

-1



SPARSE DATA: EXAMPLES

Clustering sparse networks: Number of friends does not 
grow with the size of the world. 


Similarity based clustering: Obtaining similarities is costly. 
(lengthy experiment, or cost of information). 


Recommendation systems: Only some users ranked some 
movies. Goal: reconstruct the rest of ratings. 


Big data: the full matrix can not be stored nor analyzed.  

Sparse matrices: 

Leading eigenvalues arise from local heterogeneity/impurity 
not from global structure (Lisfhitz tails). 




Analyze the phase transition 

HOW CAN PHYSICS HELP?
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THOULESS’ CALCULATION

ui!j
t =

1

�
atanh

2

4tanh(�Jij) tanh

0

@�
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k2@i\j

uk!i
t�1

1

A

3

5

paramagnetic fixed point ui!j = 0 8(ij) 2 G

ui!j
t = tanh(�Jij)

X

k2@i\j

uk!i
t�1small-u expansion

hu2
t i = chtanh2(�Jij)iJ hu2

t�1i
square and average over disorder

1 = c tanh2(�c)critical value: Jij = ±1for
(c is average degree, c=2M/N)

Bethe recursion: 



So where is the spectral method? 



ANOTHER VIEW
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t�1i
square and average over disorder

1 = c tanh2(�c)critical value: Jij = ±1for

(Krzakala, Moore, Mossel, Neeman, Sly, LZ, Zhang, PNAS‘2013)
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X
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t�1small-u expansion

 non-backtracking operator~ut = B~ut�1

ANOTHER VIEW
(Krzakala, Moore, Mossel, Neeman, Sly, LZ, Zhang, PNAS‘2013)

Bi!j,k!l = �j,k(1� �i,l)aij if (ij), (kl) 2 E

= 0 otherwise



NON-BACKTRACKING 
SPECTRAL ALGORITHM
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α=8

c <
1

(2⇢� 1)2

c >
1

(2⇢� 1)2

all eigenvalues inside a circle of radius 
p
c

additional real eigenvalue at                    
eigenvector correlated to the ground truth.   

c = 8c = 3

� = c(2⇢� 1) >
p
c

(c is average degree, c=2M/N)
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NON-BACKTRACKING SPECTRAL ALGORITHM 
FOR CLUSTERING OF NETWORKS

Non-backtracking spectral method improves over traditional ones. 



Spectrum of a graph with 5 communities 
as edges are added between groups. 



1ST ORDER PHASE 
TRANSITIONS 



PHASE TRANSITIONS
Phase diagram of water



1ST ORDER PHASE TRANSITIONS
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Slight change of the rules of the game: 
P (S⇤) = ⇢[�(S⇤ � 1) + �(S⇤ + 1)]/2 + (1� ⇢)�(S⇤)
(sparse PCA - relevant in data-science applications to learn relevant dimensions)

spinodal spinodal1st order 
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1ST ORDER PHASE TRANSITION




ALGORITHMIC INTERPRETATION
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• Easy by approximate message passing algorithms. 


• Impossible information theoretically. 


• Hard phase conjecture: No polynomial algorithm works.                                                              
Mathematically wide open.                                                     
Physically sensible.



PHYSICS VS LEARNING

liquid supercooled liquid ice

impossible computationally hard possible



HARD REGIME
Hard phase: Algorithms “stuck” at low accuracy for exponential time.

Metastable diamond 
= low accuracy. 


Equilibrium graphite 
= high accuracy.







SUPERVISED LEARNING



= Xµ = (01001010 01110011 10001100 01001011 
01110000 10001100 ….. all the pixels ….)

Goal: Find a function f so that

LEARNING A RULE

for a new picture of a cat.  

for a new picture of a dog.  

f(Xμ) = + 1

f(Xμ) = − 1

Today this is routinely done with deep neural networks.                            



HOW DOES IT WORK?

Linear regression:


Generalized linear regression:


Neural networks:

fw(Xμ) = w ⋅ Xμ

fw(Xμ) = φ(w ⋅ Xμ)

fw(Xμ) = φ(4)(W(4)φ(3)(W(3)φ(2)(W(2)φ(1)(W(1)Xμ))))

W(1) W(2) W(3) W(4)

yμ

Xμ
activation function, 
e.g. sign, or relu. 

w
Xμ

yμ



W(1)
W(2)

W(3)

Input data

labels

Hierarchy of features



Neural networks: fw(Xμ) = φ(4)(W(4)φ(3)(W(3)φ(2)(W(2)φ(1)(W(1)Xμ))))

Core of ML today: many labeled examples + GPUs + 
stochastic gradient descent minimisation of

min
w

n

∑
μ=1

ℒ(yμ, fw(Xμ)) Loss function, e.g. least 
squares, or cross-entropy

W(1) W(2) W(3) W(4)

yμ

Xμ

HOW DOES IT WORK?

Keep in mind: The goal is low test error, not low loss. 



PHASE TRANSITIONS IN 
LEARNING WITH 

NEURAL NETWORKS 
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TEACHER-STUDENT SETTING

Teacher-network


data
X

y
labels

w1

w3

teacher-weights

w2
*

*
*

Generate data X, n samples of d 
dimensional data, iid Gaussian. 


Generate random weights w*.       


Generate labels y using: 

data
X

y
labels

w1

w3

student-weights

w2

Student-network

Observes X, y, the architecture of the 
network.     


Goal: Learn the same function as used 
by the teacher (have a good test error). 



Take random iid Gaussian , and random iid  from  


Create                                            


High-dimensional regime: 

Xμi w*i Pw

yμ = σ(
d

∑
i=1

Xμiw*i )

GARDNER PROGRAM 

d → ∞n → ∞
α ≡ n/d = Θ(1)

data
X

y
labels

w
weights

data
weights

Gardner, Derrida’89 1989

p dimensions                     
n samples




For a given task and a number of data samples: 


What is the best information-theoretically achievable test error?


What is the best efficiently achievable test error? 

estim
ator, 


network architecture

training algorithm
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QUESTIONS OF INTEREST: 



BAYES-OPTIMAL GENERALIZATION 
IN THE TEACHER-STUDENT SETTING 

 A new sample Xnew is given. Bayes-optimal prediction of 

a new label:

P(W |y, X) =
1

Z(y, X)
PW(W )

n

∏
μ=1

Pout(yμ |Xμ, W )

̂ynew = 𝔼P(W|y,X) [fW(Xnew)]

Pout(yμ |Xμ, W ) = δ(yμ − fW(Xμ))

Posterior probability distribution: 

where

W = {w1, w2, …, wL} Xμ ∈ ℝd



RESULT FOR THE OPTIMAL ERROR

Assumptions: , , .  


Main theorem in the limit :

A formula for so-called free entropy  that implies both the 
test MMSE & test MSEAMP as:      

Xμi ∼ 𝒩(0,1) w*i ∼ Pw(w*i ) yμ = σ(
d

∑
i=1

Xμiw*i )
d → ∞, n → ∞, α = n/d = Θ(1)

ΦRS(m)

m

Φ
R

S(
m

)

mAMP argmax ΦRS(m)

MMSE = ρ − argmaxΦRS(m)

MSEAMP = ρ − mAMP

local max of   with lowest mmAMP ≡ ΦRS(m)

ρ ≡ 𝔼Pw
(w2)

m ∈ ℝ

Barbier, Krzakala, Macris, Miolane, LZ; arXiv:1708.03395, COLT’18, PNAS’19



Theorem: 

where

Def. free entropy: Φ = lim
d→∞

1
d

𝔼y,X log Z(y, X) α =
n
d

w, w0 ∼ Pw ρ = 𝔼Pw
(w2)

ΦRS(m, m̂) = ΦPw
(m̂) + αΦPout

(m; ρ) −
mm̂
2

ΦPw
(m̂) ≡ 𝔼z,w0[ln 𝔼w(em̂ww0+ m̂wz−m̂w2/2)]

ΦPout
(m; ρ) ≡ 𝔼v,z[∫ dyPout(y | mv + ρ − mz)ln 𝔼ξ[Pout(y | mv + ρ − mξ)]]

z, v, ξ ∼ 𝒩(0,1)

Barbier, Krzakala, Macris, Miolane, LZ; arXiv:1708.03395, COLT’18, PNAS’19

Φ = sup
m

inf
m̂

ΦRS(m, m̂) ΦRS(m) = inf
m̂

ΦRS(m, m̂)

RESULTS FOR THE OPTIMAL ERROR



Theorem: 

Def. free entropy: Φ = lim
d→∞

1
d

𝔼y,X log Z(y, X) α =
n
d

ΦRS(m, m̂) = ΦPw
(m̂) + αΦPout

(m; ρ) −
mm̂
2

Barbier, Krzakala, Macris, Miolane, LZ; arXiv:1708.03395, COLT’18, PNAS’19

Φ = sup
m

inf
m̂

ΦRS(m, m̂)

Corollary: Optimal test error 

where m* is the extremizer of RS(m).Φ

⇠ ⇠ P⇠

ρ = 𝔼Pw
(w2)

ℰtest = 𝔼v,ξ[φ( ρv)2] − 𝔼v,z,ξ[φ( m*v + ρ − m*z)]2

v, z ∼ 𝒩(0,1)

ΦRS(m) = inf
m̂

ΦRS(m, m̂)

RESULTS FOR THE OPTIMAL ERROR



Variances and means 
of the pre-activations

Variances and means 
of the weights.



STATE EVOLUTION

Define: 


mt in the AMP algorithm evolves as:


Recall the RS free entropy

then  MSE(t) = ⇢�mt

m̂t = 2↵@m�Pout(m
t; ⇢)

mt ≡
1
d

d

∑
i=1

w*i at
i

ΦRS(m, m̂) = ΦPw
(m̂) + αΦPout

(m; ρ) −
mm̂
2

mt+1 = 2∂m̂ΦPw
(m̂t)

Bolthausen’09; Bayati, Montanari’11; Javanmard, Montanari’13.
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φ(z) = sign(z) p → ∞
n → ∞ n/p = Ω(1)

optimal

AMP algorithm


logistic regression

Pw = 𝒩(0,1)

# of samples per dimension n/p
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# of samples per dimension

optimal, achievable

optimal


AMP algorithm

logistic regression

n/d

d → ∞
n → ∞yμ = sign(

d

∑
i=1

Xμiw*i )

BINARY PERCEPTRON

αIT = 1.245

αAMP = 1.493

n/d = Θ(1)
w*i ∈ {−1, + 1}

hard

Xμi ∼ 𝒩(0,1)

Barbier, Krzakala, Macris, Miolane, LZ; arXiv:1708.03395, COLT’18, PNAS’19



SUDDEN EMERGENCE OF PERFECT LEARNING 

(= A PHASE TRANSITION) 

liquid supercooled liquid ice

impossible computationally hard possible

impossible hard possible

p/n

Te
st

 e
rr

or



Broad range of applications in signal processing and imaging. 


Teacher-student setting with teacher having no hidden units, 
teacher’s activation function is the absolute value. 

PHASE RETRIEVAL 

yμ =
d

∑
i=1

Xμiw*i

w*i ∼ 𝒩(0,1)Xμi ∼ 𝒩(0,1/d) μ = 1,…, n
i = 1,…, d

Phase retrieval: Regression from training data {Xμ, yμ}n
μ=1



PHASE (SIGN) RETRIEVAL

hard*best achievable error
best known efficient algorithm

αIT = 1
αAMP = 1.13 # of samples needed for perfect generalisation for AMP algorithms. 

yμ =
d

∑
i=1

Xμiw*i

Maillard, Loureiro, Krzakala, LZ, arXiv:2006.05288, NeurIPS’20. 

# of samples for perfect generalisation for any algorithm. 

α =
n
d

, n → ∞

w*i ∼ 𝒩(0,1)

Xμi ∼ 𝒩(0,1/d)

* LLL lattice-based reduction algorithm work in poly time for  (Song, Zadik, Bruna’21)α > 1

αWR = 1/2 weak-recovery, # of samples for generalisation better than random. 
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DEEP LEARNING USES 
GRADIENT DESCENT       

(NOT MESSAGE PASSING)




GRADIENT DESCENT FOR PHASE RETRIEVAL 

ℒ({wi}p
i=1) =

n

∑
μ=1

[y2
μ − (

d

∑
i=1

Xμiwi)2]
2

yμ =
d

∑
i=1

Xμiw*i

Loss function: 

Initialisation:

Gradient flow: ·wi(t) = − ∂wi
ℒ({wj(t)}d

j=1)
wi(0) ∼ 𝒩(0,1)

where

w*i ∼ 𝒩(0,1)Xμi ∼ 𝒩(0,1/d)



GD IN PHASE RETRIEVAL

N = d

Sarao Mannelli, Biroli, Cammarota, Krzakala, Urbani, LZ; 2006.06997, NeurIPS’20.




α =
n
d

1 1.13

IT AMP

Chen, Chi, Fan, Ma’19

poly(log d)
Cai, Huang, Li, Wang’21

GRADIENT DESCENT IN PHASE RETRIEVAL 

~7

GD numerics

?
Closing the gap between GD and AMP? 

C

Sarao Mannelli, Biroli, Cammarota, Krzakala, Urbani, LZ; arxiv: 2006.06997, NeurIPS’20.


Note: Kernel methods need  to solve phase retrieval. α = O(d)

Sample complexity needed for exact recovery
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DEEP LEARNING IS 
OVER-PARAMETRIZED


Saxe, Advani’17



DOUBLE-DESCENT

Belkin et al. 2019



Generalisation error in learning with random features and 
the hidden manifold model, Gerace, Loureiro, Krzakala, 
Mézard, LZ, ICML’20.

MORE ON DOUBLE DESCENT 

Paper n. 1 for flipped class.



OVER-PARAMETRIZED PHASE RETRIEVAL 

ℒ({wia}d,m
i,a=1) =

n

∑
μ=1

[y2
μ −

1
m

m

∑
a=1

(
d

∑
i=1

Xμiwia)2]
2

yμ =
d

∑
i=1

Xμiw*i

Loss function: 

Initialisation:

Gradient flow: ·wia(t) = − ∂wia
ℒ({wjb(t)}d,m

j,b=1)
wia(0) ∼ 𝒩(0,1)

where

X
y

w

Wide (m>d) over-parametrised 
two-layer neural network 

w*i ∼ 𝒩(0,1)Xμi ∼ 𝒩(0,1/d)



OVER-PARAMETRISED LANDSPACE
Sarao Mannelli, Vanden-Eijnden, LZ, arxiv:2006.15459, NeurIPS’20.



Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459

OVER-PARAMETRIZED PHASE RETRIEVAL 



α =
n
d

1 1.13

IT AMP

~7

GD numerics

2

GD in an over-
parametrised network

Over-parametrised neural network trained by gradient descent 
needs fewer samples to solve phase retrieval 

Chen, Chi, Fan, Ma’19

poly(log d)
Cai, Huang, Li, Wang’21

C

Sarao Mannelli, Vanden-Eijnden, LZ, arxiv:2006.15459, NeurIPS’20.

OVER-PARAMETRIZED PHASE RETRIEVAL 



network architecture

training algorithm

str
uc

tu
re

d 
da

ta
/t

as
k 



Teacher/target functions considered: 


So far: no hidden units, .                                          
Generalised linear model, single index model. 


 hidden units, .                                             
Committee machine, multi-index model. 


 hidden units, .                                       
Extensive width.

d → ∞, n → ∞, α = n/d = Θ(1)

Θ(1) d → ∞, n → ∞, α = n/d = Θ(1)

Θ(d) d → ∞, n → ∞, α = n/d2 = Θ(1)



Maillard, Troiani, Simon, Krzakala, LZ. arXiv:2408.03733 

EXTENSIVE WIDTH PHASE RETRIEVAL

Teacher/target function with quadratic activation: 

yμ =
1
m

m

∑
a=1

(
d

∑
i=1

Xμiw*ia)
2

w*ia ∼ 𝒩(0,1) Xμi ∼ 𝒩(0,1/d)

m
d

= κ,
n
d2

= α, d → ∞, κ, α = Θ(1)

input data
X

y
labelsw*

Solvable in the limit: 

Paper n. 2 for flipped class.



AND WHAT ABOUT LEARNING 
FROM SEQUENCES                          

(AS LLM/TRANSFORMERS DO)? 
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Paper n. 3 for flipped class.



arxiv:2402.03902

Paper n. 4 for flipped class.



CONCLUSION

Physics has many useful tools applicable to understand 
machine learning / deep learning / AI. 
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CAN WE HELP WITH PHYSICS? 

We aim to reproduce the salient behaviours of the real system.


Iterative process of improving the model. 

architecture

algorithm
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d 
da

ta

What is a good model to understand deep learning?



SIMPLEST NEURAL NETWORK

Single layer neural network = perceptron = generalized 
linear regression. 

Given (X,y) find w such that 

μ = 1,…, n
i = 1,…, pyμ = φ(

p

∑
i=1

Xμiwi)

data
X

y
labels

w
weights

data
weights

(noisy) activation function

p dimensions.                         
n samples/ data points 



Take random iid Gaussian         and random iid         from        


Create                                            


Goal: Compute the best possible generalisation error achievable 
with n samples of dimension p.


High-dimensional regime: 

TEACHER-STUDENT MODEL

Xμi w*i

yμ = φ(
p

∑
i=1

Xμiw*i )
Pw

p → ∞
n → ∞

n/p = O(1)

data
X

y
labels

w
weights

data
weights

Gardner, Derrida’89, Gyorgyi’90



LEARNING CURVES
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φ(z) = sign(z) p → ∞
n → ∞ n/p = Ω(1)

optimal

AMP algorithm


logistic regression

Pw = 𝒩(0,1)

# of samples per dimension n/p
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n 
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r

# of samples per dimension

optimal, achievable

optimal


AMP algorithm

logistic regression

wi 2 {�1,+1}φ(z) = sign(z)

n/p

p → ∞
n → ∞ n/p = Ω(1)

PHASE TRANSITIONS
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# of samples per dimension

optimal, achievable

optimal


AMP algorithm

logistic regression

wi 2 {�1,+1}φ(z) = sign(z)

n/p

p → ∞
n → ∞ n/p = Ω(1)

hard

PHASE TRANSITIONS



COMPRESSED SENSING�
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easy with
 AMP Easy/hard threshold = 

spinodal of a 1st order 
phase transition.

Freedom in the design of X. 

Pw(wi) = (1 − ρ)δ(wi) + ρ𝒩(wi; 0,1)φ(z) = z p → ∞
n → ∞ n/p = Ω(1)

Spatial coupling.



TEACHER-STUDENT GLM

Optimal errors and phase transitions in high-dimensional 
generalized linear models, 


Barbier, Krzakala, Macris, Miolane, LZ, arXiv:1708.03395, COLT’18, PNAS’19

Paper n. 1 for flipped class.



TOWARDS THEORY OF DEEP LEARNING?
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no hidden units

message passing

needed
paper n. 1
color-code:



Gradient-based dynamics: Marvels and Pitfalls of the 
Langevin Algorithm in Noisy High-dimensional Inference, 
Mannelli, Biroli, Cammarota, Krzakala, Urbani, LZ, PRX’20. 


Structured data & architectures with hidden layers: 
Generalisation error in learning with random features and 
the hidden manifold model, Gerace, Loureiro, Krzakala, 
Mézard, LZ, ICML’20.

TOWARDS THEORY OF DEEP LEARNING?

Paper n. 2 for flipped class.

Paper n. 3 for flipped class.



How to make the hardness go away? 



COMPRESSED SENSING

From 106 wavelet coefficients, keep only 25k.

Most signals of interest are sparse in an appropriate basis.

(Exploited everywhere for data compression. Jpeg2000.)

We record the full data and then compress to keep only few bits. 

Idea: Can we record directly only the relevant bits. How? 



MATHEMATICAL SETTING

Design the matrix F such that sparse signal x can be 
reconstructed efficiently from measurements y. 

Vector x is sparse, i.e. only ρN elements are non-zero.  

The linear problem has many solutions, only is one sparse.



PHASE DIAGRAM�

Bayes-optimal compressed sensing, random iid F: 
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α

(Dohono, Maleki, Montanari’09, Krzakala, Mézard, Sausset, Sun, Zdeborová’12)

easy with
 L1

im
possi

ble
hard

easy with
 AMP

Easy/hard threshold = 
spinodal of a 1st order 
phase transition.

Freedom in the design of F. 

PX(xi) = (1 − ρ)δ(xi) + ρ𝒩(xi; 0,1)
Sparse prior: 



NUCLEATION IN PHYSICS

Infinitely (exp N) living metastable states 
exist only in mean field systems (when 
surface as large as volume). 


Nucleation in finite dimension

surface wins, droplet shrinks

volume wins, droplet grows

L

finite in N !!

Cost to flip a metastable droplet: 

L ⌧ L⇤

L � L⇤

L⇤ =
�

�f

d� 1

d

E = �Ld�1 ��fLd



NUCLEATION FOR OPTIMALITY

Heating pad or hand warmer:

sodium acetate 

melts at 58 C

Thanks to: UCGP 2008, Kyoto, Japan





INDUCING  NUCLEATION IN 
COMPRESSED SENSING 
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METASTABILITY VANISHES! 
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Thanks to induced nucleation compressed sensing is 
computationally tractable down the information theoretic limit! 

Krzakala, Mezard, Sausset, Sun, Zdeborova, Phys. Rev. X 2012.                                 
Proof: Donoho, Javanmard, Montanari, ISIT 2012.



EXAMPLE FOR BENCHMARK DATA 

L1

BEP

S-BEP

α = 0.5 α = 0.4 α = 0.3 α = 0.2 α = 0.1

α = ρ ! 0.15

Shepp-Logan phantom, 

sparse in the Haar-wavelet representation



EXAMPLE FOR BENCHMARK DATA 

Decoding with sparse superposition codes. 

• from: J. Barbier et al. Threshold Saturation of Spatially Coupled Sparse Superposition 
Codes for All Memoryless Channels. IEEE Trans. Inf. Th.’16, ITW’16.

Fisher-KPP type of 
wave-front propagation


